Webtrace Not Just GPS Tracking

Email us : denny.charter@creativehead.net
Check online demo at www.webtrace.co.id

Advertisements

Google Map Ragu Ragu di Indonesia

Berikut adalah petikan email dari salah satu petinggi TeleAtlas Indonesia :

Teleatlas adalah perusahaan penyedia peta digital Google Map. Jelas mereka ragu ragu sekali invest peta Indonesia karena regulasi Geospatial Indonesia memang masih belum Jelas. Saya sempat berkoordinasi dengan Bakorsutanal mengenai publikasi Informasi Data Spatial, disana saya ketemu dengan bagian legal dan salah satu kepala bagian. Hasilnya adalah :

  1. Dalam UU No 4 tahun 2011 pasal 50 disebutkan bahawa setiap product turunan dari IG (Informasi Geografis) harus mendapatkan ijin dari Pemerintah (Bakorsutanal). Menurut mereka seharusnya memang ada Peraturan Pemerintah yang mengatur masalah ini tetapi PP tersebut belum ada dan sedang akan di bahas. Dengan mencantumkan bahwa source peta dasar dari bakorsutanal sudah cukup mengakomodir ijin dari pemerintah.
  2. Untuk itu, kami akan mengirimkan surat kepada Bakorsutanal berupa pemberitahuan bahwa Peta Dasar yang kami peroleh dari Bakorsutanal akan kami gunakan untuk applikasi yang berisi informasi yang dipublikasikan kepada masyarakat.
  3. Menurut mereka : Bakorsutanal tidak bisa melarang untuk content IG yang dibuat dan dikembangkan sendiri oleh Perorangan ataupun Perusahaan. Dan mereka malah mendukung jika ada pihak yang membantu menyebarkan informasi geografis tersebut kepada masyarakat.
  4. Dukungan mereka seperti tercantum dalam UU No 4 tahun 2011 pasal 44 ayat 3 bahwa pemerintah akan memberikan reward kepada siapa saja yang membantu menyebarkan Informasi Geografis tersebut. Kembali karena PP yang mengatur belum ada menurut team legal bakorsutanal reward yang dimaksud dapat berupa keringanan pajak bagi perusahaan yang menyelenggarakan tersebut.

Tapi tetap saja, yang beginian masih abu abu. Bagi orang bisnis abu abu bisa jadi hitam kelam kalau tidak di analisa secara detail. Semoga pemerintah cepat mengeluarkan PP yang mengatur detail pengunaan informasi Geospatial di Indonesia. Forza Indonesia..

 

Masalah Transportasi Indonesia

Indonesia dengan Populasi 237.556.363 [2010] dengan tingkat pertumbuhan penduduk 1,49% dengan Ibu Kota Negara Jakarta seluas 650 Km2.

Penambahan 9.588.198 orang per tahun

Terdiri dari 33 Provinsi 497 wilayah dan 98 kota:

11 Metropolitan (> 1 Juta Pop), 15 kota besar (> 500.000 – 1 juta), kota medium (>100.000 – 500.000), sisanya kota kecil (<100.000).

Akibat kemacetan lalu lintas, kerugian ekonomi diperkirakan mencapai total Rp. 5.8 trilliun / tahun, Biaya operasional kendaraan menjadi Rp. 3,2 trilliun / tahun [sumber JICA Transportation master Plan Study 2004]
Masalah Utama Kemacetan di Indonesia :
1. Jumlah pemilik kendaraan pribadi dan sepeda motor bertambah dengan pesat sedangkan penambahan jalan hanya 1% / tahun [DGLT 2009]. Pembayaran tol masih manual sehingga membuat antrian semakin panjang dan traffic kontrol yang tidak optimal.
2. Public Transport dengan system BRT DKI Jakarta, Palembang, Pekanbaru, Bogor, Semarang, Yogyakarta, dan Solo.

Kondisi BRT saat ini : Diperlukan adanya informasi kapan bus akan masuk ke areal bus stop.

Membutuhkan Bus Priority System dan Ruang Kendali untuk bus location system.

3. Pelanggaran, dan kecelakaan: Jika terjadi kecelakaan di jalan toll, karakteristik toll di Indonesia adalah terbatasnya pintu keluar dan rute alternatif, imbasnya adalah jalur menjadi lebih jauh dibandingkan dengan jalur jalan biasa. Kerusakan kendaraan menjadi 10 kali lebih cepat.
Masalah tersebut secara signifikan akan berdampak pada aktivitas ekonomi dan sosial.
Fleet Monitoring System BRT Transmusi Palembang
Fleet Monitoring System BRT Transmusi Palembang
Solusinya adalah dengan menambah kontruksi jalan raya, namun cara ini membutuhkan dana yang tidak sedikit dan waktu yang lama belum lagi masalah pembebasan lahan. Selain itu diperlukan sistem transportasi cerdas yang mempu memberikan informasi informasi akurat sehingga kemacetan dapat di hindari dan diatasi dengan cara :
1. Implementasi Smartcard, area traffic control, system informasi parkir, CCTV dan Camera, dan Electronic Road Pricing (ERP).

2. System Integrasi E Ticket, Non Stop Toll Collection (ETC) yang mampu menghandle 2000 kendaraan perjam.

MapInfo Pro 10.5 | Overlay map dan editing map

Dengan MapInfo 10.5 editing/update map vector menjadi semakin mudah. Ada tools Bing Hybrid sehingga peta Bing dapat di load ke dalam MapInfo secara otomatis. Saya biasanya menggunakan Google Map atau Bing Map untuk membandingkan tingkat update data vektor yang dimiliki selain dengan survey dan data dari GPS. Untuk mengupdate map vektor dari Google Map atau Bing cukup dengan overlay data vektor dengan peta dari Google map atau Bing Map. Kemudian tambahkan ruas jalan yang belum ada.

Bing Map

Hybrid Bing

Tampilan Hibrid Bing pada MapInfo 10.5

Vector Map

Vector Map

Vector Map ditampilkan dalam tabel yang berbeda

Overlay Bing dan Vector

Overlay Bing dan Vector

Selanjutnya proses Register Vector Map dan Raster juga sangat mudah dengan mengaktifkan terlebih dahulu Tools –> Register Vector dari Tool Manager.

Register Vector

Register Vector

Atau baca artikel sebelumnya Register Peta.

Selanjutnya Silakan edit Peta Vector dengan membandingkan ruas jalan pada Bing Map dengan ruas jalan data. [dch]

Mercator Projection

Introducing

Mercator projection is a cylindrical map projection presented by the Flemish geographer and cartographer Gerardus Mercator, in 1569. It became the standard map projection for nautical purposes because of its ability to represent lines of constant course, known as rhumb lines or loxodromes, as straight segments. While the linear scale is constant in all directions around any point, thus preserving the angles and the shapes of small objects (which makes the projection conformal), the Mercator projection distorts the size and shape of large objects, as the scale increases from the Equator to the poles, where it becomes infinite.

Properties & Historycal

Mercator’s 1569 edition was a large planisphere measuring 202 by 124 cm, printed in eighteen separate sheets. As in all cylindrical projections, parallels and meridians are straight and perpendicular to each other. In accomplishing this, the unavoidable east-west stretching of the map, which increases as distance away from the equator increases, is accompanied by a corresponding north-south stretching, so that at every point location, the east-west scale is the same as the north-south scale, making the projection conformal. A Mercator map can never fully show the polar areas, since linear scale becomes infinitely high at the poles. Being a conformal projection, angles are preserved around all locations. However scale varies from place to place, distorting the size of geographical objects and transmitting a wrong idea of the overall geometry of our planet. At latitudes higher than 70° north or south, the Mercator projection is practically unusable.

All lines of constant bearing (rhumb lines or loxodromes — those making constant angles with the meridians), are represented by straight segments on a Mercator map. This is precisely the type of route usually employed by ships at sea, where compasses are used to indicate geographical directions and to steer the ships. The two properties, conformality and straight rhumb lines, make this projection uniquely suited to marine navigation: courses and bearings are measured using wind roses or protractors, and the corresponding directions are easily transferred from point to point, on the map, with the help of a parallel ruler or a pair of navigational squares.

The name and explanations given by Mercator to his world map (Nova et Aucta Orbis Terrae Descriptio ad Usum Navigatium Emendate: “new and augmented description of Earth corrected for the use of navigation”) show that it was expressly conceived for the use of marine navigation. Although the method of construction is not explained by the author, Mercator probably used a graphical method, transferring some rhumb lines previously plotted on a globe to a square graticule, and then adjusting the spacing between parallels so that those lines became straight, making the same angle with the meridians as in the globe.

The development of the Mercator projection represented a major breakthrough in the nautical cartography of the 16th century. However, it was much ahead of its time, since the old navigational and surveying techniques were not compatible with its use in navigation. Two main problems prevented its immediate application: the impossibility of determining the longitude at sea with adequate accuracy and the fact that magnetic directions, instead of geographical directions, were used in navigation. Only in the middle of the 18th century, after the marine chronometer was invented and the spatial distribution of magnetic declination was known, could the Mercator projection be fully adopted by navigators.

Several authors are associated with the development of Mercator projection:

  • German Erhard Etzlaub (c. 1460–1532), who had engraved miniature “compass maps” (about 10×8 cm) of Europe and parts of Africa, latitudes 67°–0°, to allow adjustment of his portable pocket-size sundials, was for decades declared to have designed “a projection identical to Mercator’s”.
  • Portuguese mathematician and cosmographer Pedro Nunes (1502–1578), who first described the loxodrome and its use in marine navigation, and suggested the construction of several large-scale nautical charts in the cylindrical equidistant projection to represent the world with minimum angle distortion (1537).
  • English mathematician Edward Wright (c. 1558–1615), who formalized the mathematics of Mercator projection (1599), and published accurate tables for its construction (1599, 1610).
  • English mathematicians Thomas Harriot (1560–1621) and Henry Bond (c.1600–1678) who, independently (c. 1600 and 1645), associated the Mercator projection with its modern logarithmic formula, later deduced by calculus.

Mathematic Of Projection

The following equations determine the x and y coordinates of a point on a Mercator map from its latitude φ and longitude λ (with λ0 being the longitude in the center of map):

mercator1This is the inverse of the Gudermannian function:

mercator2The scale is proportional to the secant of the latitude φ, getting arbitrarily large near the poles, where φ = ±90°. Moreover, as seen from the formulas, the pole’s y is plus or minus infinity.

Derivation of the projection

Assume a spherical Earth. (It is actually slightly flattened, but for small-scale maps the difference is immaterial. For more precision, interpose conformal latitude.) We seek a transform of longitude-latitude (λφ) to Cartesian (xy) that is “a cylinder tangent to the equator” (i.e. xλ) and conformal, so that:

mercator3mercator11From x = λ we get

mercator4mercator12giving

mertacor5mercator13Thus y is a function only of φ with y'=\sec\varphi from which a table of integrals gives :

mercator6It is convenient to map φ = 0 to y = 0, so take C = 0.

Uses

Like all map projections that attempt to fit a curved surface onto a flat sheet, the shape of the map is a distortion of the true layout of the Earth’s surface. The Mercator projection exaggerates the size of areas far from the equator. For example:

  • Greenland is presented as having roughly as much land area as Africa, when in fact Africa’s area is approximately 14 times greater than Greenland.
  • Alaska is presented as having similar or even slightly more land area than Brazil, when Brazil’s area is actually more than 5 times that of Alaska.
  • Finland appears with a greater north-south extent than India, although India’s is the greater.

Although the Mercator projection is still in common use for navigation, due to its unique properties, cartographers agree that it is not suited to large area maps due to its distortion of land area. Mercator himself used the equal-area sinusoidal projection to show relative areas. As a result of these criticisms, modern atlases no longer use the Mercator projection for world maps or for areas distant from the equator, preferring other cylindrical projections, or forms of equal-area projection. The Mercator projection is still commonly used for areas near the equator, however, where distortion is minimal.

Arno Peters stirred controversy when he proposed what is known as the Gall-Peters projection, a slight modification of the Lambert Cylindrical Equal-Area projection, as the alternative to the Mercator. A 1989 resolution by seven North American geographical groups decried the use of all rectangular-coordinate world maps, including the Mercator and Gall-Peters.[1]

Google Maps currently uses a Mercator projection for its map images. Despite its obvious scale distortions at small scales, the projection is well-suited as an interactive world map that can be zoomed seamlessly to large-scale (local) maps, where there is relatively little distortion due to the projection’s conformal nature. (Google Satellite Maps, on the other hand, used a plate carrée projection until July 22, 2005.)

The Google Maps tiling system displays most of the world at zoom level 0 as a single 256 pixel-square image, excluding the polar regions. Since the Mercator coordinate x varies over 2π, the other coordinate is limited to –πyπ. Because

mercator7the corresponding latitude extrema are φ = ±85.05113°. Latitude values outside this range are mapped using a different relationship that doesn’t diverge at φ = ±90°.

Click here to download UTM Conversion (*.xls) .

Reference : Wikipedia

(Use for personal documentation)

Pemanfaatan IT — Solusi untuk Masalah Distribusi

Manajemen Transportasi bertujuan untuk memberikan cara yang optimal untuk mendistribusikan sumber yang dimiliki ke lokasi / demand berasal. Jika membicarakan transportasi maka akan berkaitan dengan masalah distribusi. Distribusi harus diatur dengan baik sehingga operasional akan menjadi efektif. Efektivitas operasional akan memberikan efisiensi bagi perusahaan yang nantinya mampu menekan biaya sehingga akan berpengaruh dalam menciptakan competitive product.

Pemborosan di transportasi umumnya terdapat pada pos-pos berikut :

1.  Penggunaan BBM (Bahan Bakar Minyak)

2.  Maintenance Kendaraan

3.  Driver (Overtime)

4. Penyalahgunaan kendaraan perusahaan

5. Pengoperasian Kendaraan yang tidak baik

Jika di asumsikan perusahaan menggunakan 10 orang driver dengan gaji per jam Rp.10.000 dan Jam kerja perhari adalah 8 jam (masuk jam 8.00 , break makan siang jam 12.00 s/d jam 13.00 kembali bekerja pada 13.00 sampai 17.00) maka biaya yang dikeluarkan oleh perusahaan adalah seperti berikut :

Jumlah Driver 10
Jumlah Driver 10
Gaji per Jam Rp. 10.000
Jam Kerja / hari 8
Biaya perhari Rp.800.000
Biaya pe Bulan Rp. 24.800.000
Biaya per Tahun Rp. 288.600.000

Tapi sebenarnya tidaklah demikian. Walaupun dalam timesheet Driver jam kerja satu hari 8 jam full kenyataannya driver beroperasi jam 08.30, dilanjutkan break makan siang 12.00 s.d 13.30. Kembali bekerja pada 13.30 s/d 16.30. Jam efektif umumnya adalah 6.5 jam. Seharusnya pengeluaran perusahaan adalah seperti berikut :

Jumlah Driver 10
Jumlah Driver 10
Gaji per Jam 10.000
Jam Kerja per hari 6.5
Biaya perhari Rp. 650.000
Biaya pe Bulan Rp. 19.500.000
Biaya per Tahun Rp. 234.800.000

Terdapat inefisiensi 18,74 %. Bayangkan jika armada dan driver yang dimiliki 100 unit, 1000 unit, atau 10.000 unit. Berapa besar kerugian yang dialami oleh perusahaan.

Jika di lihat dari pemakaian BBM. Tetap dengan asumsi 10 unit kendaraan dengan capaian KM perbulan rata-rata adalah 2.500 dan asumsi pemakaian BBM adalah Rp.1000/Km. maka kita akan mendapatkan perhitungan biaya seperti berikut :

Jumlah Driver 10
KM per month/driver 2500
Biaya bensin / Km Rp.1000
Biaya per Bulan Rp.25.000.000
Biaya pe Tahun Rp.300.000.000

Biaya tersebut dapat ditekan dengan mengetahui jalur atau rute yang dilalui oleh kendaraan. Jalur yang efektif akan dapat mengurangi jumlah pemakaian KM setiap bulannya dengan tetap berorientasi pada hasil pencapaian yang sama. Routing yang benar akan mampu memperbaiki jalur yang ditempuh dalam distribusi. Dan 10 % biaya BBM akan dapat ditekan.

Teknologi Informasi dengan Automated Vehichle Tracing System mengatasi masalah Fleet Management..

Teknologi Informasi adalah solusi untuk mendapatkan efisiensi dan efektivitas operasional distribusi. Teknologi ini mensinergikan antara GIS (Geographic Information System), GPS (Global Positioning System) dan Cellular Teknology (GSM).

Bagaimana Cara Kerjanya

AVTS

Perangkat GPS Tracking di pasang di kendaraan. Perangkat ini berfungsi menerima sinyal satelite GPS untuk mendapatkan lokasi (x,y) di permukaan bumi. Data lokasi (x,y) ini ditransmisikan melalui teknologi GSM ke Server Sistem Pelacak. Di server data lokasi ini di proses di tampilkan kedalam peta digital dan dengan kemampuan GIS (Geographic Information System) dalam dilakukan analisa-analisa lokasi. Data-data lokasi dan informasi lainya dapat di integrasi menjadi sistem yang sangat powerfull dalam menunjang keputusan management. Beberapa kemampuan analisa diantaranya :

1. Analisa zoning / wilayah : mengetahui seberapa banyak frequensi demand per wilayah tertentu.

2. Analisa Delivery : dengan routing modul dapat menganalisa waktu yang diperlukan untuk mencapai lokasi tertentu.

3. Analisa performance driver : merekam semua kegiatan dan aktivitas driver, jalur yang dilalui, waktu perjalanan, kecepatan berkendaraan, dll.

4. Analisa layering, dll.

Webtrace1

Selain dari fungsi-fungsi standart Tracking :

1. Emergnecy alert (Keamanan Kendaraan dan driver)

2. Feofencing (Zoning wilayah yang dilalui : Inside, Outside, Enter, Exit)

3. Meremote control mesin kendaraan, alarm kendaraan, bensin, central lock, dll.

4. Waktu dan Kecepatan berkendaraan.

Kesimpulan

IT merupakan tantangan bagi perkembangan teknologi transportasi kedepannya. Implementasi IT akan memberikan efisiensi dan efektifitas operasional  pada manajemen transportasi.

Klik sini untuk download Slide

GPS Performance Standard Document Updated

The National Executive Committee for Space-Based Positioning, Navigation, and Timing (PNT) has released an updated civil GPS Standard Positioning Service Performance Standard, committing the United States Department of Defense (DoD) to an improved level of GPS accuracy for civilian signals.

It is the fourth revision of the standard positioning service (SPS) performance standards document, and the first update since October 2001. In addition to specifying GPS minimum performance commitments, the SPS performance standard serves as a technical document designed to complement the GPS Signal in Space (SIS) Interface Specification.
The most significant change in the updated SPS standards is a 33 percent improvement in the minimum level of SIS range accuracy, from 6 meters root mean square (rms) accuracy to 4 meters rms (7.8 meters, 95 percent), according to the document, which is drafted by the DoD and released through the PNT committee.

Other notable changes are the addition of minimum levels of SIS range velocity accuracy and range acceleration accuracy, which were unspecified in the previous version of the SPS performance standard. The updated document also introduces a definition for an “expandable 24-slot” GPS constellation with more than 24 satellites, although the baseline 24-slot GPS constellation definition remains unchanged from the previous version of the SPS performance document.

While the stated dedication to improvement is notable, it has a built-in conservative margin for minimum performance; as the documents authors note in the executive summary: “with current (2007) SIS accuracy, well designed GPS receivers have been achieving horizontal accuracy of 3 meters or better and vertical accuracy of 5 meters or better, 95 percent of the time.”
One notable item missing from the updated document is a commitment to semicodeless GPS access. This isn’t a surprise, as the U.S. Department of Defense (DoD) published a notice in the Federal Register Tuesday, September 23, stating that it will cease to support codeless/semi-codeless GPS access as of December 31, 2020. Prior to that, on May 16, the U.S. Dept. of Commerce’s (DoC) Office of Space Commercialization first issued a Notice for Public Comment on the DoD proposal to discontinue supporting P(Y) codeless/semicodeless on both GPS L1 and L2 frequencies broadcast from modernized satellites (Block IIR-M, Block IIF and Block IIIA/B/C) beginning December 31, 2020.

The SPS document only addresses the L1 GPS signal. Although three new modernized civil signals will be available in the future, L2C, L5, and L1C, the performance specifications in this version of the SPS apply only to the L1 C/A signal, since this is the only civil GPS signal that is currently fully operational, the SPS authors noted. (Sumber GPS World)